Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury.

نویسندگان

  • Edward F Chang
  • Ronald J Wong
  • Hendrik J Vreman
  • Takuji Igarashi
  • Ethel Galo
  • Frank R Sharp
  • David K Stevenson
  • Linda J Noble-Haeusslein
چکیده

After traumatic brain injury (TBI), substantial extracellular heme is released from hemoproteins during hemorrhage and cell injury. Heme oxygenase (HO) isozymes are thought to detoxify the pro-oxidant heme to the potent antioxidant, bilirubin. HO-1, the inducible isozyme, is expressed in glial populations after injury and may play a protective role. However, the role of HO-2, the predominant and constitutively expressed isozyme in the brain, remains unclear after TBI. We used a controlled cortical impact injury model to determine the extent and mechanism of damage between HO-2 knock-out (KO) (-/-) and wild-type (WT) (+/+) mice. The specific cellular and temporal expressions of HO-2 and HO-1 were characterized by immunocytochemistry and Western blots. HO-2 was immunolocalized in neurons both before and after TBI, whereas HO-1 was highly upregulated in glia only after TBI. HO activity determined by gas chromatography using brain sonicates from injured HO-2 KO mice was significantly less than that of HO-2 wild types, despite the induction of HO-1 expression after TBI. Cell loss was significantly greater in KO mice in areas including the cortex, the CA3 region of hippocampus, and the lateral dorsal thalamus. Furthermore, motor recovery after injury, as measured by the rotarod assay and an inclined beam-walking task, was compromised in the KO mice. Finally, brain tissue from injured HO-2 KO mice exhibited decreased ability to reduce oxidative stress, as measured with an Fe(2+)/ascorbic acid-mediated carbon monoxide generation assay for lipid peroxidation susceptibility. These findings demonstrate that HO-2 expression protects neurons against TBI by reducing lipid peroxidation via the catabolism of free heme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heme oxygenase-2 modulates early pathogenesis after traumatic injury to the immature brain.

We determined if heme oxygenase-2 (HO-2), an enzyme that degrades the pro-oxidant heme, confers neuroprotection in the developing brain after traumatic brain injury (TBI). Male HO-2 wild-type (WT) and homozygous knockout (KO) mice at postnatal day 21 were subjected to TBI and euthanized 1, 7, and 14 days later. Relative cerebral blood flow, measured by laser Doppler, cortical and hippocampal pa...

متن کامل

Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats

Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...

متن کامل

Ferritin: a cytoprotective antioxidant strategem of endothelium.

Phagocyte-mediated oxidant damage to vascular endothelium is likely involved in various vasculopathies including atherosclerosis and pulmonary leak syndromes such as adult respiratory distress syndrome. We have shown that heme, a hydrophobic iron chelate, is rapidly incorporated into endothelial cells where, after as little as 1 h, it markedly aggravates cytotoxicity engendered by polymorphonuc...

متن کامل

Heme Oxygenase Contributes to Alleviate Salinity Damage in Glycine max L. Leaves

Plants are frequently subjected to different kinds of stress, such as salinity and, like other organisms, they have evolved strategies for preventing and repairing cellular damage caused by salt stress. Glycine max L. plants were subjected to different NaCl concentrations (0-200 mM) for 10 days. Treatments with 100 and 200 mM NaCl induced ion leakage and lipid peroxidation augmentation, loss in...

متن کامل

Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation.

Oxidative stress is a mediator of cell death following cerebral ischemia/reperfusion and heme toxicity, which can be an important pathogenic factor in acute brain injury. Induced expression of phase II detoxification enzymes through activation of the antioxidant response element (ARE)/Nrf2 pathway has emerged as a promising approach for neuroprotection. Little is known, however, about the neuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 9  شماره 

صفحات  -

تاریخ انتشار 2003